SITUATING SPACE

Final Review Requirements

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

Standard CPlanes Set View Display Select Viewport Layout Visibility Transform Curve Tools Surface Tools Solid Tools Mesh Tools Render Tools Drafting New in V5

(1) (2) (a)

 \＆
 20
－
2
田跬
18
践

ARCH 251 －Axonometric Print View Top Front Right \ddagger
∇ End ∇ Near ∇ Point ∇ Mid ∇ Cen ∇ Int \square Perp ∇ Tan \square Quad \square Knot \square Vertex \square Project \square Disable

EACH STUDENT WILL HAVE 5 MINUTES TO GIVE A CONCISE PRESENTATION AND 10 MINUTES FOR DISCUSSION WITH THE REVIEWERS.
ADDITIONAL PROCESS MODELS AND WORK CAN BE PLACED ON A STOOL BENEATH YOUR PRESENTATION

CATHEDRAL OF LIGHT / SOM (Skidmore, Owings \& Merrill)

GREENLAND ART GALLERY / BIG Architects

A ROLLING MASTER PLAN, NORWAY / Jagnefalt Milton Architects

This EXPLODED AXONOMETRIC drawing should show the material assembly and structural logic used to build your model. The spatial content and qualities of this drawing will be supported by your plan, sections, digital drawing and physical model.

SHEET SIZE / 12" X $24^{\prime \prime}$ Vellum SCALE / 1:2 (Half Size)

WIRE / Draw all wire lines, articulate the relationship between the wires and trace their relationship to chipboard and blue foam.

CHIPBOARD / Draw all chipboard surfaces and trace their relationship to the foam masses below.

BLUE FOAM / Draw all blue foam masses and their relationship to each other. Locate the edges of these masses on the site surface below by using thin hidden lines.

SITE SURFACE / Draw all joint lines including all hidden lines, articulating material thickness. Draw the surface transformation of the chipboard.

SITE / Draw all joint lines including all hidden lines. Draw the construction assembly of your site.

WIRE / Draw all wire lines, articulate the relationship between the wires and trace their relationship to chipboard and blue foam.

CHIPBOARD / Draw all chipboard surfaces and trace their
relationshin to the foam masses below.

BLUE FOAM / Draw all blue foam masses
and their relationship to each other. Locate the edges
of these masses on the site surface below by using
thin hidden lines.

SITE SURFACE / Draw all joint lines including all
hidden lines, articulating material thickness. Draw the
surface transformation of the chipboard.

SITE / Draw all joint lines including all hidden lines. Draw the construction assembly of your site.

SITE SURFACE / Draw all joint lines including all \qquad hidden lines, articulating material thickness. Draw the surface transformation of the chipboard.

SITE / Draw all joint lines including all hidden lines. Draw the construction assembly of your site

WIRE / Draw all wire lines, articulate the relationship between the wires and trace their relationshin to chipboard and blue foam

CHIPBOARD / Draw all chipboard surfaces and trace their
relationship to the foam masses below.

BLUE FOAM / Draw all blue foam masses and their relationship to each other. Locate the edges of these masses on the site surface below by using thin hidden lines.

SITE SURFACE / Draw all joint lines including all hidden lines, articulating material thickness. Draw the
surface transformation of the chipboard.

SITE / Draw all joint lines including all hidden lines.
Draw the construction assembly of your site

CHIPBOARD / Draw all chipboard surfaces and trace their relationship to the foam masses below.

BLUE FOAM / Draw all blue foam masses and their relationship to each other. Locate the edges of these masses on the site surface below by using thin hidden lines. SITE SURFACE / Draw all joint lines including all hidden lines, articulating material thickness. Draw the surface transformation of the chipboard.

WIRE / Draw all wire lines, articulate the relationship between the wires and trace their relationship to chipboard and blue foam.

CHIPBOARD / Draw all chipboard surfaces and trace their
relationship to the foam masses below

BLUE FOAM / Draw all blue foam masses
and their relationship to each other. Locate the edges
of these masses on the site surface below by using
thin hidden lines

SITE SURFACE / Draw all joint lines including all hidden lines, articulating material thickness. Draw the
surface transformation of the chipboard.

SITE / Draw all joint lines including all hidden lines
Draw the construction assembly of your site

WIRE / Draw all wire lines, articulate the relationship between the wires and trace their relationship to chipboard and blue foam.

CHIPBOARD / Draw all chipboard surfaces and trace their relationship to the foam masses below.

BLUE FOAM / Draw all blue foam masses and their relationship to each other. Locate the edges of these masses on the site surface below by using thin hidden lines.

SITE SURFACE / Draw all joint lines including all hidden lines, articulating material thickness. Draw the surface transformation of the chipboard.

SITE / Draw all joint lines including all hidden lines. Draw the construction assembly of your site.

DUE NEXT THURSDAY (December 5th):

A. One (1) Exploded Axonometric Drawing based on the model used to make your most recent Rhino Plan Oblique. Start in class Today!!!
B. One (1) Revised Model that will serve as the basis for all the drawings in your final presentation. Keep in mind that while this model will be your "last" iteration, it does NOT mean that aspects of this model cannot be tweaked in your supporting analog and digital drawings.
C. One (1) Revised Narrative Paragraph. We will collect all of your paragraphs and review them before Thursday.

Thursday will be a work day for you to start your drawings for the final review. We will talk to everyone at their desks, but we will not have formal desk-crits.

